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~This is one step in a program aimed at classifying solutions of the
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Riemann problem for 2 x 2,\hyperbolic quadratic conservation laws./\Such
conservation laws approximate a general 2 x 2 system of conservation lags in
a neighborhood of a point at which strict hyperbolicity fails. ﬁ: ;Ii;;;;;
solution for the symmetric systems in Region III of the four region

clagsification of Schaeffer and Shearer. The solution is based on the

qualitative shape of the integral curves described by Schaeffer and Shearer

s
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and a numerical calculation of the Hugoniot loci with their shock types. .
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SIGNIFICANCE AND EXPLANATION
A 2 x 2 system of conservation laws is a system of partial differential
equations of the form

(1) 8, * £y, =0

where u = (u,v), £ =1£f(g) are in R x R and where x ¢ R, t » 0. Such
equations arise in gas dynamics, elasticity, oil reservoir simulation and
other areas of engineering when diffusion is neglected. 1In solutions of (1),

information travels at speeds X1 and AZ given by the eigenvalues of the
of
matrix Ta° Since this matrix depends on u, v, the speeds A1 and Az

~

depend on the solution, and this leads to the formation of discontinuities
called shock waves. The present paper deals with the classification of

Riemann problem solutions (solutions which evolve from a single discontinuity
of

at time t = 0) near an isolated point at which 3 is a multiple of the

~

identity, so that l1 = Az. Such a singularity has no analogue in the linear

theory.
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THE CLASSIFICATION OF SOLUTIONS OF QUADRATIC RIEMANN PROBLEMS (II)

*,6,7,8,9,10

E. Isaacson ' 1,2,3,4,5

and B. Temple

§1. Introduction
This is the second in a series of papers [5] in which we give the solution of the
Riemann problem for quadratic conservation laws

{a1u2 + v + c1v2} =0,

(e
Nl

1 2 2
+ = +
vt 5 {azu + 2b2uv c2v lx =0 ,

with initial data

(y = (uL,vL) r x <0
g(x,0) = \ u, = (u_,v ) x >0
~R -~ "R'R"'

where u £ (u,v). This is one of the steps in a program outlined in [6].

Solutions of such conservation laws aproximate the solutions of a general 2 x 2
system of conservation laws in a neighborhood of an isolated point at which strict
hyperbolicity fails.

We use the normal form

{au2 + 2buv + v2}x =0,

[ad
N

{bu® + 2uv} = 0

o
N
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of Schaeffer and Shearer [12].

We let 11(2) < Az(g) denote the eigenvalues of system (1); we note that for system
(1), X1 = X2 only wvhen y = 0, in which case ) = 0.

In the first paper (5], we presented the solution of the Riemann problem for the
parameter values

a>2, b=o0.
This corresponds to the symmetric systems in Region IV of [12,5]. In the present work we
give the solution of the Riemann problem for the parameter range
1¢a<2, b=20,
which corresponds to the symmetric systems in Region I1I. We refer to [5] for a detailed
discussion of the problem and the notation.

We obtain the shapes and shock types of Hugoniot loci H(gL) by means of numerical
calculation. This, together with the qualitative features of the integral curves given by
[12,2] (see Fig. 1) is the basis for our construction of the solutions. We present the
solution of the Riemann problem in a series of diagrams for representative values of M

The qualitative features of the solution diagrams change precisely when 4, crosses

H(g) or crosses a ray x1 = 0. In Regions I-III the Hugoniot locus H(Q) consists of
three straight lines (called axes), while in Region IV this locus is a single line [12].
For the symmetric systems in Regions I-III (i.e., a < 2, b = 0), one of the axes is the
u-axis and the other two are given by

v=t/2-au.

The rays X1 = 0 are given by

{ - Ya u in the lower half plane
v =

+ /a u in the upper half plane .
We give the solution of the Riemann problem for representative values of 4 in the lower
half plane (v < 0) because of the symmetries in system (1) (see (5]). Since the
solutions change qualitatively only at the rays H(0) and A1 = 0, we choose a
representative value of ¥ from each interior and bounding ray of the sectors (see Fig.

2)
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. A-{g:e12<e<0},

A, =lg:08,<oca,l,

12

Ay = fu 8, <8 <o},

A, = {u-m <o 634} ,

where

9 arctan (~/2 - a) ,

12

= arctan (+/2 - a) ~ n ,

9

34

8, = arctan (-/a) .

The angles correspond to the axes and the ray x1 = 0, respectively.

A new feature in Region III is that the Hugoniot locus H(gL) and the 1-wave curve
Wyly,) can be disconnected {S]. This makes the solutions more complicated than those
found in Region IV.

In Section 2 we describe the elementary waves and Hugoniot loci, and in Section 3 we
present the solution of the Riemann problem.

We wish to acknowledge the assistance of Dan Marchesin and Bradley Plohr with the
numerical aspects of the problem. We also thank Michael Shearer and David Schaeffer for
helpful discussions on many aspects of quadratic Riemann problems. Finally, we would like

to thank Dan and Paulo Paes-Leme for their gracious hospitality during our stay in Brazil.
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§2. Elementary Waves

i

The rarefaction waves of system (1) are obtained from the integral curves of the

Rd

.

Y

L
WEe
.‘-lo.

eigenvector fields of the Jacobian A(u). The shock waves of system (1) are obtained from

-
l’l‘
L]

the Hugoniot loci. The general solution of the Riemann problem that we construct is
obtained by composing these waves. The solution consists of a 1-composite wave followed

by a 2-composite wave where a p-composite wave is a succession of shock and rarefaction

v "!
- o =

waves of the p family [S]. The p-wave curve Wp(gn) consists of all final states in p-
compogsite waves with initial state -
I The qualitative shapes of the integral curves for the symmetric systems (1) in Region

v III are depicted in Figure 1 (see [12,2]).

2.1 Hugoniot loci

The structure of the Hugoniot loci is depicted in Figs. 3A~J for representative
values of Yy These figures indicate the general topological structure of the loci as

well as the location of shock types. As u varies, these features change qualitatively

L
only at the boundaries of the Sectors Ay - A, (and at ), = 0). The topological

structure of the Hugoniot locus changes at the axes, while at the lines ) = 0 the

topological structure remains fixed but the location of shock types changes. (We do not .

include A_ = 0 as a boundary since the change in shock types at )i, = 0 does not affect

2 2

the Riemann problem solutions. Specifically, the wave curves, and hence solutions, do not
change qualitatively at Xz = 0.)

Note that the Hugoniot loci of states in quadrant IV of the u,v-plane determine all
Hugoniot loci because the reflection of a Hugoniot locus about either the u- or v-axis is

again a Hugoniot locus (S5). For clarity, we include the Hugoniot loci for sector A4 and

its boundary rays 8 = -n, 8 = 634 because these are relevant to the solution of the

Riemann problem.
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. 2.2 Special Points
In Figs. 4B-G, E is a fixed point on the positive u-axis, and a4y
integral curve :.rough E.

the positive u-axis as E through states with v # 0.

u tends to
In Figs. 3C-F and 4C-F, the points B; and Dy are the points on
olu By ) = A {u) = aly D).
Necessarily, {uL,DL,BL} is a triple shock [5].
l In Figs. 3D~I and 4D-I, the points C; and ci are the points at

tangent to a 2-integral curve.

C O . s

The point A is the limit of the intersection of

is taken on the

(u) with
(g,) at which
which (up) is
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3. Solution of the Riemann Protlem

In Figs. 4A-J we give the solution of the Riemann problem for the symmetric systems
(1) in Region III. 1In each diagram, g is fixed and an arbitrary point represents ¥p-

Figs. 4C, E, G and I depict the solutions for u, in Sectors A,, Az, Ay and A,,

L
respectively, in each of which the solution diagrams are qualitatively the same. For

completeness, we include solution diagrams for u

L, on the boundaries of these sectors:

The ray 6 = 612 is the axis separating Sectors A, and Ay, and the ray ¢ = 93‘ is
the axis separating Sectors A3 and A4. The ray 6 = 6, which separates Sectors Az

and A3 is the key ra; on which A1 = 0.

In each solution diagram, the 1-wave curve W, (u,} consists of the union of the 1-
shock, l1-rarefaction, and 1-composite curves for 9 - (See the Legend.) For each point

4, € w1(5L)' the portion of the 2-wave curve Wz(g’) appearing in the diagrams is

obtained by proceeding from . along 2-shock and 2-rarefaction curves as far as possible

in the direction of the arrows.

The solution of the Riemann problem < u

BN > consists of a 1-wave with left state

u, and right ctate Y followed by a 2-wave with left state Y and right state 9

L R

where the intermediate state . is determined as follows: start from u and follow

R

the 2-wave curve backwards from u (opposite the direction of the arrows) until you

R
reach a point g4 in w1(gL). The state u, 8o constructed satisfies Y € wz(gm) and
defines the waves in the solution. This procedure is not well~defined precisely when e
is in either the compressive portion of H(BL) or the triple shock curve. (The triple
shock curve is [ABL] in Figs. 4C-E and is [-y,A] 1in Figs. 4F, G. There is no triple
shock curve in the other figures.) In the case of ambiguity, the solutions are unique ir

the x,t-plane since then all shock speeds that occur are equal. This ensures continuous

dependence of the solution on . and u

R°
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